پروژه قابلیت اطمینان در شبکه های توزیع. doc

پروژه قابلیت اطمینان در شبکه های توزیع. doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 70 صفحه

 

چکیده:

به منظور سنجش کیفیت عملکرد یک سیستم از نقطه نظر پیوستگی در سرویس‌دهی به مشتریکن از معیاری بنام قابلیت اطمینان استفاده می‌شود. یک سیستم قدرت هم، از نقطه نظر قابلیت اطمینان در هر سه بخش خود یعنی تولید، انتقال و توزیع قابل دسترسی می‌باشد.

در دهه‌های گذشته به مسأله قابلیت اطمینان شبکه‌های توزیع در مقایسه با سیستم‌های تولید و انتقال کمتر توجه شده است. عمده‌ترین دلیل این مسأله این است که سیستم‌های تولید و انتقال خود به تنهایی، بزرگ، پرهزینه و گسترده بوده و اختلال در کار آن آثار منفی گسترده و فراگیری بر خود آنها و محیط اطرافشان وارد می‌کند. به همین دلیل تأکید عمده بر مراقبت و بررسی مسائل این دو بخش از سیستمهای قدرت بوده است. در حالی که یک سیستم توزیع در مقایسه با سیستم‌های تولید و انتقال کم هزینه‌تر بوده و بروز وقفه در عملکرد آن پیامدهای محلی و کوچکی دارد.

اما از سوی دیگر بررسی آمار وقفه‌ها و قطعی‌های مشترکین نشان می‌دهد که بروز خطا در شبکه‌های توزیع بیشتر از خطاهای سیستم‌های تولید و انتقال باعث ایجاد این وقفه‌ها می‌گردد.

داده‌های جدول زیر مقادیر معمول قطعی مشترکین ناشی از بروز خطا در هر سه بخش یک سیستم قدرت خاص در مدت زمان یکسان را نشان می‌دهد.

مشاهده می‌کنیم که شبکه‌های 11kv و 6/6kv باعث وقوع 7/60% از کل عدم دسترسی مشترکین به انرژی الکتریکی می‌گردند. بنابراین لزوم اجرای طرحهایی جهت ارزیابی و بهبود قابلیت اطمینان شبکه‌های توزیع برای تأمین مطلوب انرژی الکتریکی مصرف‌کنندگان بیش از پیش مشخص می‌گردد.

لزوم ارزیابی قابلیت اطمینان شبکه‌های توزیع از جنبه‌های دیگری هم قابل توجه می‌باشد:

1- گرچه یک شبکه توزیع و طرحهایی پایداری داده شده برای آن نسبتاً ساده به نظر می‌رسند اما به لحاظ گستردگی این بخش، سهم عمده‌ای از کل سرمایه‌گذاری را به خود اختصاص می‌دهد. در نتیجه هر بهینه‌سازی و صرفه‌جویی به ظاهر کم اهمیت در این سیستم‌ها به علت گستردگی و وسعت آن صرفه‌جویی زیادی به دنبال خواهد داشت.

2- لازم است یک تعادل معقول بین قابلیت اطمینان بخشهای تشکیل‌دهنده یک سیستم قدرت یعنی تولید، انتقال و توزیع برقرار باشد.

3- برای تأمین رشد آتی بار و جوابگویی به تقاضای روزافزون مصرف انرژی الکتریکی، طراحان و مجریان طرحهای توسعه شبکه‌های توزیع با توجه به وضعیت شبکه و با هدف و بهینه‌سازی اقتصادی، ترکیبهای مختلفی از تجهیزات و خطوط را طراحی، شبیه‌سازی و اجرا می‌کنند. شناخت و بکارگیری روشهای ارزیابی قابلیت اطمینان سیستم‌های توزیع می‌تواند زمینه‌های لازم را برای انجام مطالعات اساسی و دستیابی به اهداف فوق فراهم آورد. با بکارگیری معیارهای مناسب قابلیت اطمینان می‌توان طراحی و توسعه شبکه را بطور بهینه هم از نظر اقتصادی و هم از نظر کیفیت سرویس‌دهی انجام داد. با مطالعات قابلیت اطمینان می‌توان به تخمین یا پیش‌بینی نرخ حوادث محتمل در شبکه، فرکانس خاموشی، میزان بار قطع شده، مدت خاموشی و اثرات آن پرداخت.

بنا به دلایل بالا مسأله ارزیابی قابلیت اطمینان شبکه‌های توزیع امروزه بطور جدی مورد توجه قرار گرفته و مطالعات زیادی در این زمینه صورت می‌گیرد و روشهای مختلفی برای این منظور ارائه می‌شود که با در نظر گرفتن نوع و مشخصات سیستم و دقت موردنیاز در محاسبات، یکی از این روشها برای ارزیابی قابلیت اطمینان شبکه انتخاب می‌شود.

در این پایان‌نامه در دو فصل به بررسی قابلیت اطمینان شبکه‌های توزیع پرداخته شده است.

در فصل اول مبانی نظریه قابلیت اطمینان کلاسیک مورد بررسی قرار می‌گیرد و روشها و روابط لازم برای محاسبات قابلیت اطمینان در انواع سیستم‌های سری، موازی و ... بیان می‌شود مفهوم نرخهای خرابی و زمانهای تعمیر عناصر، توزیع‌های احتمال کاربردی، دیاگرام فضای حالت قابلیت اطمینان، احتمالات حالت ماندگار و فرآیند مارکوف به طور مفصل مطرح می‌گردد. در پایان روابط تقریبی مفید برای ارزیابی قابلیت اطمینان ارائه می‌شود.

در مفاصل دوم مفاهیم قابلیت اطمینان در سیستم‌های قدرت ارائه شده، آنگاه به مطالعه در ارتباط با شبکه توزیع پرداخته می‌شود که شامل بخشهای زیر است:

اهداف مطالعات قابلیت اطمینان در شبکه‌های توزیع معرفی انواع سیستمهای توزیع معیارهای ارزیابی قابلیت اطمینان سیستم توزیع معرفی و شرح روشهای محاسبه قابلیت اطمینان سیستم توزیع

 

مقدمه:

مطالعه درباره قابلیت اطمینان بخش مهمی از فرایند طراحی مهندسی است که در آن عملکرد آینده یک سیستم مورد بررسی و قضاوت قرار می‌گیرد. از آنجا که پیش‌بینی آینده نمی‌تواند با قطعیت کامل همراه باشد طبیعی است در انجام محاسبات قابلیت اطمینان، روشهایی بکار می‌روند که امکان مدلسازی عدم قطعیت را فراهم می‌آورند. کمیت‌های ریاضی باید تعارف دقیقی داشته و توسط اعداد بیان کردنی باشند اما همین کمیتها معمولاً از مفاهیم ذهنی سرچشمه می‌گیرند که نمی‌توان تمام جنبه‌های آنها را به عدد درآورد. نیاز به قابلیت اطمینان عاملی است که کم و بیش همه ما را وادار به صرف وقت، انرژی و پول می‌کند. بطورکلی قابلیت اطمینان بیشتر معادل با هزینه بالاتر است. اما با یک هزینه معین قابلیت اطمینان سیستم را به چه سطحی می‌توان رسانید؟!

با انجام محاسبات قابلیت اطمینان می‌توان به موارد بالا پاسخ داد. به علاوه امکان مقایسه طرحهای مختلف و انتخاب مناسبترین آنها فراهم می‌گردد. پیشرفتهای اولیه در تکنیکهای محاسبه قابلیت اطمینان با تحقیقات مربوطه به صنایع فضایی و نظامی همراه بود. این تکنیکها سپس در صنایع هسته‌ای، کارخانه‌های با تولید مداوم نظیر کارخانه‌های ساخت مواد شیمیایی و فولاد، که با بروز خطا ضررهای زیادی متحمل می‌شوند و بالاخره در صنعت برق که موظف است نیاز مصرف‌کنندگان را در هر زمان برآورده سازد، جای خود را بسرعت باز کردند. باید بخاطر داشت اظهارنظر در مورد عملکرد مناسب یک سیستم مسأله پیچیده‌ای است و حتما باید با قضاوت مهندسی، که عمیقاً ریشه در تجربه دارد انجام پذیرد. بنابراین مجاسبه قابلیت اطمینان ابزاری در دست مهندس طراح می‌باشد نه جایگزین او. در زمانی هم که هنوز ارزیابی قابلیت اطمینان به صورت یک روال مستقل هویت پیدا نکرده بود مهندسان با استفاده از تجربه خود و با عنایت به مفهوم ذهنی قابلیت اطمینان، طراحی‌های برجسته‌ای انجام می‌دادند. انجام محاسبات قابلیت اطمینان بدون توجه به واقعیت فیزیکی، بیشتر به یک بازی ریاضی شبیه است تا یک کار جدی مهندسی.

نکته دیگر آنکه یک طرح با وجود داشتن قابلیت اطمینان بالا فقط وقتی در عالم واقعیت به همان میزان اعتبار خواهد داشت که با یک کنترل کیفیت خوب در مرحله ساخت، به قابلیت اطمینان ذاتی آن اجازه بروز داده شود. بنابراین قابلیت اطمینان و کنترل کیفیت کاملاً بهم وابسته‌اند. در ادامه مفاهیم اصلی تئوری قابلیت اطمینان بیان خواهد شد. سپس روشهای محاسبه قابلیت اطمینان تعریف شده در سیستم‌های گوناگون، مورد بررسی قرار خواهد گرفت تا بدین ترتیب زمینه برای مطالعه قابلیت اطمینان

در شبکه‌های توزیع انرژی الکتریکی که موضوع فصل دوم است فراهم گردد.

 

فهرست مطالب:

فصل اول:

مبانی نظریه و قابلیت اطمینان

1-1مقدمه

1-2مفاهیم اصلی قابلیت اطمینان

1-3تفکیک های محاسبه قابلیت اطمینان سیستم ها

1-3-1 سیستم سری

1-3-2 سیستم موازی

1-3-3 سیستم سری-موازی

‏1-3-4- سیستم ‏k‏ از ‏n

1-3-5 سیستم کمکی آماده باش

1-3-6 سیستم پیچیده

1-3-7 روش های بررسی قابلیت اطمینان سیستم های پیچیده

1-3-8 تکنیک های ارزیابی و توزیع های احتمال

1-3-9 دیاگرام فضای حالت قابلیت اطمینان

1-3-10 احتمالات حالت ماندگار

1-3-11 فرآیند مارکوف

1-4 روابط تقریبی برای محاسبه قابلیت اطمینان

فصل دوم:

2-1 مقدمه

2-2 اهداف مطالعات قابلیت اطمینان در سیستم های توزیع

2-3 مروری بر انواع تجهیزات شبکه توزیع

2-4 معیار های ارزیابی قابلیت سیستم های توزیع

2-5-1 روش فضای حالت

2-5-2 روش شبکه

2-5-3 روش کات ست مینیمال

2-5-4 روش تخمین

2-5-5 روش مونت کارلو

2-5-6 روش تحلیلی مبتنی بر RELRAD

2-6 ارزیابی قابلیت اطمینان شبکه های توزیع با روش کات ست مینیمال

2-6-1 اثرات تجهیزات حفاظتی

2-6-2 اثر انتقال بار

2-6-3 اثرات تعمیر و نگهداری

2-6-4 اثرات خرابی های موقت و گذرا

2-6-5 اثرات تغییرات آب و هوا

2-6-6 مدلسازی سوئیچینگ در محاسبات قابلیت اطمینان

2-6-7 از دست دادن پیوستگی به طور کامل و جزئی

2-6-8 خطا در مسیر های تغذیه اضطراری

 

فهرست جداول:

جدول 1-1 حالات موفقیت یک سیستم 2 از 3

جدول 1-2 کات ست های مینیمال

 

فهرست شکل ها:

شکل 1-1

شکل 1-2 سیستم سری دو عضوی

شکل 1-3 سیستم موازی دو عضوی

شکل 1-4 یک سیستم سری و موازی

شکل 1-5 سیستم کمکی آماده باش

شکل 1-6 سیستم پل

شکل 1-7 کات ست های مینیمال پل

شکل 1-8 تای ست های سیستم پل

شکل 1-9 دیاگرام فضای حالت سیستم تک عضوی

شکل 1-10 دیاگرام فضای حالت سیستم دو قطعه با قطعات متفاوت

شکل 1-11 دیاگرام فضای حالت سیستم دو قطعه ای یکسان

شکل 2-1 دیاگرام تک مدار یک سیستم توزیع نوعی

شکل 2-2 فیدر اولیه شعاعی با کلید های مانور و سکسیونرها

شکل 2-3

شکل 2-4 یک شبکه شعاعی ساده

 

منابع و مأخذ:

حاتمی ع . «کاربرد مجمعه های فازی در ارزیابی قابلیت اطمینان شبکه های توزیع الکتریکی» پایان نامه کارشناسی ارشد دانشگاه تربیت مدرس ، تهران 1377 ، با راهنمایی دکتر محمود رضا حقی فام. حقی فام م .، حاتمی ع .، ارزیابی قابلیت اطمینان سیستم های توزیع و محاسبه هزینه های خروج بر اساس مجمعه های فازی ؛ نشریه دانشکده فنی ، جلد 33 ، شماره 3 ، آذر 78R.Billinton and R.N.Allan,Reliability Evaluation of Engineering systems : concepts and Techniques, Plenum press, New York, 1983R.Billinton and R.N.Allan,Reliability Evaluation of power systems, Plenum press, New York and London, 3rd edition 1994R.Billinton and G.lian, “A New Technique for Active minimal cut set selection used in substation Reliability Evaluation”.Microelectron.Reliab., vol 35, No5, pp.797-805.1995.

خرید و دانلود پروژه قابلیت اطمینان در شبکه های توزیع. doc


پروژه خودروهی هیبریدی (Hybrid Vehicles). doc

پروژه خودروهی هیبریدی (Hybrid Vehicles). doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 10 صفحه

 

مقدمه:

امروزه با توجه به آلودگی‌های ناشی از خودروها و محدودیت‌های سوخت فسیلی، کارخانه‌های خودروسازی گام مهمی در مقابله با این امر برداشته‌اند که از جمله آنها می توان به خودروهای هیبریدی (Hybrid Vehicle)، تکنولوژی پیل سوختی (Fuel Cell)، موتورهای با پاشش مستقیم‌ بنزینی (GDI)، موتورهای HCCI و خودروهای دو گانه سوز (Bifuel) اشاره کرد.

بازدة بالا، آلایندگی کم، مسافت قابل پیمایش بالا، ایمنی مطلوب و قیمت قابل رقابت با خودروهای متداول از جمله ویژگیهای حائز اهمیت برای خودروهای هیبریدی است. بسیاری از خودروسازان بزرگ مبادرت به تولید این خودروها در سطحی گسترده نموده‌اند. در اینقسمت به شمای کلی از نحوة عملکرد، حالتهای کارکردی، مزایا، معایب و تقسیم‌بندی سیستم‌های مختلف خودروی هیبریدی خواهیم پرداخت.

 

فهرست مطالب:

مقدمه

تاریخچة خودروی هیبریدی

ویژگیها

سیستمهای ذخیره سازی انرژی

انواع خودروهای هیبریدی

سیستم هیبریدی سری

سیستم هیبریدی موازی

سیستم هیبریدی سری ـ موازی

مقایسه چند نوع سیستم هیبریدی

 حالتهای عملکردی موتور هیبریدی سری-موازی

حالت روشن شدن و دورهای پایین و متوسط

حرکت در حالتهای معمولی

شتابگیری سریع

شارژ شدن باطری

حالت استراحت



خرید و دانلود پروژه خودروهی هیبریدی (Hybrid Vehicles). doc


پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 85 صفحه

 

چکیده:

پس از کشف نانولوله های کربنی توسط ایجیما و همکارانش بررسی های بسیار زیادی بر روی این ساختارها در سایر علوم انجام شده است. این ساختارها به دلیل خواص منحصر به فرد مکانیکی و الکتریکی که از خود نشان داده اند جایگزین مناسبی برای سیلیکون و ترکیبات آن در قطعات الکترونیکی خواهند شد. در اینجا به بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ که به عنوان یک کانال بین چشمه و دررو قرار داده شده پرداختیم و نحوه ی توزیع جریان در ترانزیستور های اثر میدانی را در شرایط دمایی و میدان های مختلف بررسی کرده ایم. از آنجایی که سرعت خاموش و روشن شدن ترانزیستور برای ما در قطعات الکترونیکی و پردازنده های کامپوتری از اهمیت ویژه ای برخوردار است، انتخاب نانولوله ای که تحرک پذیری بالایی داشته باشد بسیار مهم است. نتایج بررسی ها نشان می دهد تحرک پذیری الکترون در نانولوله های کربنی متفاوت به ازای میدان های مختلفی که در طول نانولوله ها اعمال شود، مقدار بیشینه ای را خواهد گرفت. بنا بر این در طراحی ترانزیستورها با توجه به مشخصه های هندسی ترانزیستور و اختلاف پتانسیلی که بین چشمه و دررو آن اعمال می شود باید نانولوله ای را انتخاب کرد که تحرک پذیری مناسبی داشته باشد.

واژه های کلیدی

نانولوله ی کربنی، ترانزیستور اثر میدانی، مدل ثابت نیرو ، تحرک پذیری الکترون

 

مقدمه:

با گذر زمان و پیشرفت علم و تکنولوژی نیاز بشر به کسب اطلاعات و سرعت پردازش و ذخیره سازی آنها به صورت فزاینده ای بالا رفته است. گوردن مور معاون ارشد شرکت اینتل در سال 1965 نظریه ای ارائه داد مبنی بر اینکه در هر 18 ماه تعداد ترانزیستورهایی که در هر تراشه به کار می رود دو برابر شده و اندازه آن نیز نصف می شود [1]. این کوچک شدگی نگرانی هایی را به وجود آورده است. بر اساس این نظریه در سال 2010 باید ترانزیستورهایی وجود داشته باشد که ضخامت اکسید درگاه که یکی از اجزای اصلی ترانزیستور است به کمتر از یک نانومتر برسد. بنا بر این باید بررسی کرد، اکسید سیلیسیم به عنوان اکسید درگاه در ضخامت تنها کمتر از یک نانومتر انتظارات ما را در صنایع الکترونیک برآورده می کند یا نه. در راستای همین تحقیقات گروه دیگری از دانشمندان به بررسی نیترید سیلیکون به عنوان نامزد جدیدی برای اکسید درگاه پرداختند و نشان دادند که این ماده می تواند جایگزین مناسبی برای اکسید سیلیکون باشد [2]. جهت تولید ترانزیستورهای نسل امروز احتیاج به دانشی داریم که بتوانیم در ابعاد نانو تولیدات صنعتی از تراشه ها را داشته باشیم. بنا بر این توجه جوامع علمی و اقتصادی جهان بر این شاخه از علم که به فن آوری نانو معروف است، جلب شده است. در این بین نانولوله های کربنی به دلیل خواص منحصر به فرد الکتریکی و مکانیکی که از خود نشان داده اند توجه بسیاری از دانشمندان را به خود جلب کرده اند [3و4].

در راستای این تحقیقات ما به بررسی خواص الکتریکی نانولوله های کربنی پرداخته ایم. بسیاری از دانشمندان بر این باور هستند که نانولوله های کربنی به دلیل قابلیت رسانش ویژه یک بعدی جای مواد سیلیکونی در تراشه های نسل آینده را خواهند گرفت [5و6].

کربن با عدد اتمی 6 در گروه ششم جدول تناوبی قرار دارد. این عنصر ترکیب اصلی موجودات زنده را در بر گرفته است. بنا بر این بیشتر دانشمندان سعی می کنند ترکیبات کربنی را در شاخه ی شیمی آلی بررسی کنند. این عنصر از دیر باز برای انسان به صورت دوده و ذغال چوب شناخته شده بود. گونه-های متفاوت دیگری از کربن نیز وجود دارند که تفاوت این گونه ها صرفاً به شکل گیری اتم های کربن نسبت به هم یا به ساختار شبکه ای آن ها بر می گردد.

 

فهرست مطالب:

مقدمه

فصل اول

مقدمهای بر کربن و اشکال مختلف آن در طبیعت و کاربرهای آن

1-1 مقدمه

1-2 گونه های مختلف کربن در طبیعت

1-2-1 کربن بیشکل

1-2-2 الماس

1-2-3 گرافیت

1-2-4 فلورن و نانو لولههای کربنی

1-3 ترانزیستورهای اثر میدانی فلز- اکسید - نیمرسانا و ترانزیستور های اثرمیدانی نانولولهی کربنی

فصل 2

بررسی ساختار هندسی و الکتریکی گرافیت و نانولولههای کربنی

2-1 مقدمه

2-2 ساختار الکترونی کربن

2-2-1 اربیتال p2 کربن

2-2-2 روش وردشی

2-2-3 هیبریداسون اربیتالهای کربن

2-3 ساختار هندسی گرافیت و نانولولهی کربنی

2-3-1 ساختار هندسی گرافیت

2-3-2 ساختار هندسی نانولولههای کربنی

2-4 یاختهی واحد گرافیت و نانولولهی کربنی

2-4-1 یاختهی واحد صفحهی گرافیت

2-4-2 یاخته واحد نانولولهی کربنی

2-5 محاسبه ساختار نواری گرافیت و نانولولهی کربنی

2-5-1 مولکولهای محدود

2-5-2 ترازهای انرژی گرافیت

2-5-3 ترازهای انرژی نانولولهی کربنی

2-5-4 چگالی حالات در نانولولهی کربنی

2-6 نمودار پاشندگی فونونها در صفحهی گرافیت و نانولولههای کربنی

2-6-1 مدل ثابت نیرو و رابطهی پاشندگی فونونی برای صفحهی گرافیت

2-6-2 رابطهی پاشندگی فونونی برای نانولولههای کربنی

فصل 3

پراکندگی الکترون فونون

3-1 مقدمه

3-2 تابع توزیع الکترون

3-3 محاسبه نرخ پراکندگی کل

3-4 شبیه سازی پراکندگی الکترون – فونون

3-6 ضرورت تعریف روال واگرد

فصل 4

بحث و نتیجه گیری

4-1 مقدمه

4-2 نرخ پراکندگی

4-3 تابع توزیع در شرایط مختلف فیزیکی

4-4 بررسی سرعت میانگین الکترونها، جریان، مقاومت و تحرک پذیری الکترون

4-4-1 بررسی توزیع سرعت در نانولولههای زیگزاگ نیمرسانا

4-4-2 بررسی جریان الکتریکی در نانولولههای زیگزاگ نیمرسانا

4-4-3 بررسی مقاومت نانولولههای زیگزاگ نیمرسانا

4-4-3 بررسی تحرک پذیری الکترون در نانولولههای زیگزاگ نیمرسانا

نتیجه گیری

پیشنهادات

ضمیمهی (الف) توضیح روال واگرد.

منابع

چکیده انگلیسی

 

فهرست شکل ها :

 شکل1-1. گونه های مختلف کربن

شکل 1-2. ترانزیستور اثر میدانی

شکل 1-3. ترانزیستور نانولوله ی کربنی

شکل 2-1. اربیتال

شکل 2-2. هیبرید

شکل 2-3. ساختار

شکل 2-4. شبکه گرافیت

شکل 2-5. یاخته ی واحد گرافیت

شکل2-6. یاخته ی واحدنانولوله ی کربنی

شکل 2-7. گونه های متفاوت نانولوله های کربنی

شکل 2- 8. تبهگنی خطوط مجاز در نانولوله ی کربنی

شکل 2-9. مؤلفه های ماتریس ثابت نیرو

 

فهرست جدول ها:

جدول 2-1 عناصر ماتریس ثابت نیرو

 

فهرست نمودارها:

نمودار 2-1. نوار انرژی الکترونی گرافیت

نمودار 2-2. نوار انرژی الکترونی نانولوله ی کربنی

نمودار 2-3. چگالی حالات در نانولوله ی کربنی

نمودار 2-4. نوار سه بعدی انرژی فونونی گرافیت

نمودار 2-5. نوار انرژی فونونی در راستای خطوط متقارن منطقه اول بریلوئن

نمودار 2-6. نوار انرژی فونونی نانولوله ی کربنی

نمودار 3-1. سطح فرمی در نانولوه های کربنی

نمودار 3-2. منطقه ی تکرار شونده در نانولوله های کربنی

نمودار 3-3. نقاط متقارن در مسئله پراکندگی

نمودار 4-1. نرخ پراکندگی در دو نانولوله ی زیگزاگ  و

نمودار 4-2. وابستگی دمایی نرخ پراکندگی

نمودار4-3. تابع توزیع در میدان ضعیف و قوی  نانولوله ی

نمودار4-4. تابع توزیع در میدان ضعیف و قوی  نانولوله ی

نمودار 4-5. وابستگی سرعت میانگین الکترون به دما در نانولوله ی کربنی

نمودار 4-6. توزیع سرعت در نانولوله های زیگزاگ

نمودار 4-7. نمودار جریان – ولتاژ در مورد نانولوله های زیگزاگ

نمودار 4-8. مقاومت نانولوله های مختلف

 

فهرست پیوست ها:

پیوست الف: توضیح روال واگرد

چکیده انگلیسی

 

منابع و مأخذ:

[1] G. Moore, Electronics, 38, (1965), 114.

[2] A. Bahari, P. Morgen, Surface Science, 602, (2008), 2315.

[3] Y.X. Liang, T.H. Wang, Physica E, 23, (2004), 232.

[4] Christian Klinke, Ali Afzali, Chemical Physics Letters, 430, (2006), 75.

[5] Jing Guo, Mark Lundstrom, and Supriyo Datta, Applied Physics Letters, 80, (2002),3192.

[6] Ph. Avouris, R. Martel, V. Derycke, J. Appenzeller, Physica B, 323, (2002), 6.

[7] H. Raffi-Tabar, Physics Reports, 390, (2004), 235.

[8] Jianwei Che, Tahir¸ Cagin and William A Goddard, Nanotechnology, 10, (1999), 263.

[9] Qingzhong Zhao, Marco Buongiorno Nardelli and J.Bernholc, Physical Review B

, 65, (2002) 144105.

[10] Paul L. McEuen, Michael S. Fuhrer and Hongkun Park, IEEE Transactions on Nanotechnology, 1, (2002), 78.

[11] S. Iijima and T. Ichihashi, Nature, 363, (1993), 603.

[12] K.B.K. Teo., IEE Proc.-Circuits Devices Syst. 151, (2004), 443.

[13] Rodney S.Ruoff, DongQian, WingKam Liu, C.R.Physique, 4, (2003), 993.

[14] Cheung, C. L., Kurtz, A., Park, H. and Lieber, CMJ Phys. Chem B, 106, (2002), 2429.

[15] Y. Kobayashi, H. Nakashima, D. Takagi and Y. Homma, Thin Solid Films, 464, (2004), 286  

[16] Anazawa, Kazunori, Shimotani, Kei, Manabe, Chikara, Watanabe, Hiroyuki and Shimizu, Masaaki, Applied Physics Letters, 81, (2002), 739.

[17] Lee Seung Jong, Baik Hong Koo, Yoo Jae eun and Han Jong hoon, Diamond and Related Materials, 11, (2002), 914.

[18] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chemical Physics Letters, 243, (1995), 49.

[19] E. Yoo, L. Gao, T. Komatsu, N. Yagai, K. Arai, T. Yamazaki, K. Matsuishi, T.Matsumoto, and J. Nakamura, J. Phys. Chem. B, 108, (2004), 18903.

[20] Bae-HorngChen , Jeng-Hua Wei , Po-Yuan Lo , Hung-Hsiang Wang , Ming-Jinn Lai ,  Ming-JinnTsai, Tien Sheng Chao , Horng-Chih Lin and Tiao-Yuan Huang, Solid-State Electronics, 50, (2006), 1341.

[21] Ji-YongPark, Nanotechnology, 18, (2007), 095202.

[22] Madhu Menon, Physical Review Letters, 79, (1997), 4453.

[23] R.Satio, M. S. Dresselhaus, G. Dresselhaus, Physical Properties Of Carbon Nanotubes, Imperial College Press, ISBN 1-86094-093-5, (1998).

[24] Jens Peder Dahl, Introduction to the Quantum World of Atoms and Molecules, World Scientific Publishing Company, ISBN: 9810245653, (2001).

[25] Leonard L. Schiff, Quantum Mechanics 1st Edition, McGraw – Hill Book Company, ISBN: 0070552878, (1948).

[26] Charles Kittle, Introduction to solid state physics 7th edition, John Wiley and Sons, ISBN: 0-471-11181-3, (1996).

[27] Neil W. Ashcroft, N. David Mermin, Solid State Physics, Saunders College Publishing, ISBN: 0-03-083993-9, (1976).

[28] J. J. Sakurai, Modern Quantum Mechanics, Addision – Wesley Publishing, ISBN: 0-201-53929-2, (1994).

[29] R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chemical Physics Letters, 209, (1993), 77.

[30] YXiao ,XHYan ,JXCao and JWDing, J.Phys. Condense Matter, 15, (2003), 341.

[31] A. S. Davydov, Quantum Mechanics, Pergamon Pr, ISBN: 0080204376, (1976).

[32] G. Pennington and N. Goldsman, Physical Review B, 68, (2003), 45426.

[33] G. Pennington and N. Goldsman, IEICE Transactions on Electronics, 86, 372 (2003).

[34] S. Saito and A. Zettle, Carbon Nanotubes Quantum Cylinders of Graphene, Elsevier, ISBN: 978-0-444-53276-3, (2008).

[35] Xinjian Zhou, Carbon Nanotube Transistors, Sensors, and Beyond, In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Cornell University, (2008).

[36] Ali Javey, Hydoungsub Kim, Markus Brink, Qian Wang, Ant Ural, Jing Guo, Paul Mcintyre, Paul Mceuen, Mark Lundstrom and Hongjie Dai, Nature materials, 1, (2002), 241.

 [37] J. M. Zeeman, Electrons and Phonons, The International Series Of Monographs On  Physics, ISBN:0-19-580779-8, (1960).

[38] JingGuo, MarkLundstrom, Applied Physics Letters, 86, (2005), 193103.

[39] Anisur Rahman, Jing Guo, Supriyo Datta and Mark S. Lundstrom, IEEE Transactions on Electron Devices, 50, (2003), 1853.

[40] D.V. Pozdnyakov, V.O. Galenchik, F.F. Komarov, V.M. Borzdov, Physica E, 33 (2006) 336.

 [41] R. Mickevicius, V. Mitin and U. K. Harithsa, J. Applied Physics, 75, (1994), 973.

 [42] Yung-Fu Chen and M. S. Fuhrer, Physical Review Letters, 95, (2005), 236803



خرید و دانلود پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc


پروژه استاندارد طراحی روشنایی معابر. doc

پروژه استاندارد طراحی روشنایی معابر. doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 40 صفحه

 

مقدمه:

1-1-تعاریف ومفاهیم اصلی درروشنایی معابر

1-1-1-ترتیب نصب

ترتیب نصب در واقع به نحوه ی قرار گرفتن پایه های روشنایی نسبت به یکدیگر اشاره می کند.ارایش پایه ها شامل چهارحالت نصب زیگزاگ،نصب روبه رو،نصب دریک طرف ونصب دروسط

1-1-2-فاصله نصب

فاصله بین دوپایه متوالی درهر حالت نصب،فاصله نصب نام دارد.این فاصله به موازات خط مرکزی معبر اندازه گیری می شود.

1-1-3-مرکز فتومتریک

درصورتی که لامپ رایک منبع نور متمرکز،به صورت یک نقطه نورانی،درنظربگیریم آن نقطه مرکزفتومتریک نامیده می شود.

1-1-4-ارتفاع نصب

فاصله عمودی بین مرکز فتومتریک وسطح معبر،ارتفاع نصب نام دارد.(شکل 1-1)

 

فهرست مطالب:

فصل اول

1-1 تعاریف و مفاهیم اصلی در روشنایی معابر

فصل دوم

تقسیم بندی معابر شهری

2-1 مقدمه تقسیم بندی معابر شهری

فصل سوم

3-1 دستورالعملهای طراحی روشنایی معابر

 

فهرست اشکال:

شکل 1-1 : مشخصات قسمت های مختلف پایه

شکل 1-2 : آزمایش شارژ روشنایی اولیه لامپ

شکل 2-1 : مقطع عرضی نمونه از راه شریانی درجه 1

شکل 2-2 : مقطع عرضی نمونه از راه شریانی درجه 1

شکل 2-3 : مقطع عرضی نمونه از راه شریانی درجه 2

شکل 2-4 : مقطع عرضی نمونه از راه شریانی درجه 2

شکل 3-1 : آرایش نمونه برای یک میدان با چهار ورودی

شکل 3-2 : آرایش نمونه برای یک میدان کوچک در تقاطع نوع T

شکل 3-3 : آرایش نمونه برای یک میدان با سه ورودی

شکل 3-4 : طرح روشنایی یک چهارراه

شکل 3-5 : وضعیت پایه ها در اطراف محل عبور عابرین ، نصب زیگزاگ

شکل 3-6 : وضعیت پایه ها در اطراف محل عبور عابرین ، نصب روبرو

 

فهرست جداول:

جدول 2-1 : سرعت مجاز و سرعتهای طرح پیشنهادی برای انواع راههای شهری

جدول 2-2 : معیارهای سنجش کیفیت ترافیک قسمتهای اصلی آزاد راهها و بزرگ راهها

جدول 2-1 : معیار کیفیت ترافیک ئر راههای شریانی درجه 2

جدول 2-1 : حداقل حریم یا حریم توصیه شده از لبه راه جهت نصب پایه

جدول 2-1 : ضریب نگهداری چراغ

جدول 2-1 : حداقل شدت روشنایی متوسط در معابر مختلف

جدول 2-1 : حداقل میانگین شدت روشنایی در مسیرهای پیاده و دوچرخه

جدول 2-1 : پخش نور مجاز چراغهای روشنایی در مجاورت فرودگاهها



خرید و دانلود پروژه استاندارد طراحی روشنایی معابر. doc


پروژه بررسی ساختار و نحوه عملکرد سیستم های کنترل صنعتی. doc

پروژه بررسی ساختار و نحوه عملکرد سیستم های کنترل صنعتی. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 160 صفحه

 

مقدمه:

اصطلاح اتو ماسیون صنعتی به طور عام مربوط به علوم و تکنولوژی کنترل پروسه است و شامل کنترل فرایند های متفاوتی در صنعت است. این بحث امروزه در مجامع صنعتی بصورت خیلی عادی رایج است و در بسیاری از اماکن صنعتی به مرحله اجرا در آمده است.

 توسعه در کنترل و صنعتی سازی امکان پیشرفت بیشتر و گسترده تر پروسه های پیچیده و دخالت دادن تکنولوژیهای جدید و استفاده از مزایای اقتصادی آنها را فراهم ساخته است و لازم است به این نکته مهم متذکر شویم که اقتصادی کردن سیستمها زیر ساخت پیشرفتهای آن بوده و هست وهمین پیشرفت ها منجر به این شد که اقبال عمومی نظر به سیستمهای تمام توماتیک داشته باشد.

یکی از قایلیتهای مهم خودکار سازی وجود تجهیزات قابل انعطاف یا به عبارتی انعطاف پذیری است که به اختصار می توان به شکل زیر تعریف کرد: سازگاری آرام و پیوسته در تغییر یک کارخانه با رعایت استفاده بهینه از امکانات موجود و گام برداشتن به سوی پیشرفت با رعایت انطباق با سیستمهای قدیمی و بالا بردن قابلیتها و کیفیت تولید و بهینه سازی در مواد اولیه مصرفی و انرژی.

این خواسته سیستمها را به سوی طراحی و ساخت مجتمعهای تمام کامپیوتری CIM هدایت کرد.  این مقوله روی نمایش پروسه ها در زمان کنترل تولید و قابلیت تقسیم کار بین قسمتها و طراحی فراورده ها با مواد اولیه و انرژی مصرفی و زمان کم و کیفیت بالا تمرکز دارد.

در هر صنعتی اتوماسیون سبب بهبود تولید می گردد که این بهبود هم در کمیت ومیزان تولید موثر است و هم در کیفیت محصولات.هدف از اتوماسیون این است که بخشی از وظایف انسان در صنعت به تجهیزات خودکار واگذار گردد.بسیاری از کارخانه ها کارگران خود را برای کنترل تجهیزات می گمارند و کارهای اصلی را به عهده ماشین می گذارند. کارگران برای اینکه کنترل ماشینها را به نحو مناسب انجام دهند لازم است که شناخت کافی از فرایند کارخانه و ورودیهای لازم برای عملکرد صحیح ماشینها داشته باشند.یک سیستم کنترل باید قادر باشد فرایند را با دخالت اندک یا حتی بدون دخالت اپراتورها کنترل نماید.در یک سیستم اتوماتیک عملیات شروع،تنظیم و توقف فرایندبا توجه به متغیر های موجود توسط کنترل کننده سیستم انجام می گیرد.

 

فهرست مطالب:

مقدمه

فصل اول

« مقدمه ای بر سیستم های کنترل »     

کنترل و اتوماسیون        

انواع فرایندهای صنعتی   

استراتژی کنترل  

انواع کنترلرها  

سیر تکاملی کنترل کننده ها   

فصل دوم

« انتقال اطلاعات در صنعت »

معماری شبکه   

استانداردهای معروف لایه فیزیکی شبکه های صنعتی  

معرفی واسط های انتقال و عوامل موثر در انتقال  

پروتکل ها و استانداردها      

فصل سوم

« کنترل کننده های برنامه پذیر PLC »  

سخت افزار PLC   

زبان های برنامه نویسی PLC    

ارتباط بین چندین PLC  

فصل چهارم

« سیستم های کنترل گسترده DCS »        

ساختار سیستم های DCS  

سطوح کاری     

اصول کاری سیستم های DCS  

کاربردها  

فصل پنجم

« سیستم های اتوماسیون APACS »

Controller Configuration Software

سخت افزار سیستم APACS  

بسته های نرم افزاری APACS

بسته های سخت افزاری APACS   

شرح مدار ماژول کنترل +ACM

فصل ششم

« سیستم های SCADA »

SCADA  چیست؟    

ارتباطات    

واسط ها    

فصل هفتم

« سیستم های FIELD BUS و مقایسه آنها با سیستم های DCS »

نحوه عملکرد سیستم های  FCSدر مقایسه با DCS

دسته بندی  فیلد باس     

توپولوژی های فیلد باس    

مقایسهFCS  و DCS و مزایا و معایب آنها نسبت به یکدیگر



خرید و دانلود پروژه بررسی ساختار و نحوه عملکرد سیستم های کنترل صنعتی. doc